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ABSTRACT Cell adhesion molecules of the immunoglobulin superfamily (IgCAMs) play a crucial role in cell-cell interactions
during nervous system development and function. The Aplysia CAM (apCAM), an invertebrate IgCAM, shares structural and
functional similarities with vertebrate NCAM and therefore has been considered as the Aplysia homolog of NCAM. Despite these
similarities, the binding properties of apCAM have not been investigated thus far. Using magnetic tweezers, we applied phys-
iologically relevant, constant forces to apCAM-coated magnetic particles interacting with apCAM-coated model surfaces and
characterized the kinetics of bond rupture. The average bond lifetime decreased with increasing external force, as predicted
by theoretical considerations. Mathematical simulations suggest that the apCAM homophilic interaction is mediated by two
distinct bonds, one involving all five immunoglobulin (Ig)-like domains in an antiparallel alignment and the other involving only
two Ig domains. In summary, this study provides biophysical evidence that apCAM undergoes homophilic interactions, and
that magnetic tweezers-based, force-clamp measurements provide a rapid and reliable method for characterizing relatively
weak CAM interactions.
INTRODUCTION
There is growing interest in cellular mechanotransduction
thanks to recent advances in experimental techniques that
facilitate force application to cells and novel cell-culture
systems with controlled mechanical properties and shapes
(1). Force-induced changes in conformation, post-transla-
tional modification, and assembly of proteins have long
been considered to act as switches that modulate intracel-
lular signaling pathways (2). However, the dynamic nature
of subcellular structures, such as focal adhesions, sug-
gests that mechanotransduction mechanisms that are more
dynamic than simple protein switches are required. These
dynamic mechanisms should be able to sense variations in
the rate, frequency, and duration of applied forces and
respond accordingly (3). Therefore, it is becoming increas-
ingly important to distinguish the various types of intra- and
intermolecular bonds employed by mechanosensitive pro-
teins and protein-protein complexes in order to understand
dynamic phenomena such as cell adhesion and cell motility.

Cell-cell adhesion is based on noncovalent interactions
betweenmembrane-bound cell adhesionmolecules (CAMs),
many of which contain tandem repeats of structural motifs
in a multimodular fashion (4). This multimodular structure
is also common to extracellular matrix proteins such as
fibronectin (Fn), and to intracellular proteins involved in me-
chanotransduction, such as talin (4). CAMs of the immuno-
globulin superfamily (IgCAMs) consist of glycoproteins
that contain multiple Ig-like domains and fibronectin type
III (Fn III)-like domains in their extracellular portion.
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IgCAMs mediate adhesion to other cells and to the extracel-
lular matrix through homophilic or heterophilic trans inter-
actions. They can also form cis interactions on the same
cell surface, leading to zipper-like structures (5). Intracel-
lular portions of IgCAMs are anchored to cytoskeletal
proteins and are able to trigger or modulate a number of
signaling processes in response to extracellular stimuli (6).
The IgCAM known as neural CAM (NCAM) is particu-
larly well studied because of its important role in nervous
system development and function, especially in neurite
outgrowth (7).

Although many studies have provided insight into NCAM
binding and function in vertebrate neurons, little is known
about the biophysical mechanisms of how NCAM mediates
adhesion and outgrowth through regulation of the cytoskel-
eton. This is largely because it is challenging to perform a
quantitative analysis of cytoskeletal dynamics and mechan-
ical properties in vertebrate growth cones. Due to their large
size, Aplysia neurons represent an attractive model system
for studying growth cone motility and cytoskeletal reorgani-
zation (8–14). Aplysia CAM (apCAM) has been considered
to be the homolog of vertebrate NCAM because both mole-
cules consist of five Ig-like and two Fn III-like repeats;
however, NCAM and apCAM share only 26% amino acid
identity (15). apCAM is involved in neurite fasciculation
(16), memory-related synapse formation (17), and long-
term facilitation (18). Studies with apCAM-coated beads
revealed that this CAM can functionally associate with
the actin cytoskeleton in two major ways: 1), apCAM clus-
tering triggers site-directed actin assembly (19); and 2),
apCAM acts as a force transducer in adhesion-evoked
growth through coupling to the underlying retrograde actin
http://dx.doi.org/10.1016/j.bpj.2012.08.025

mailto:gil.lee@ucd.ie
http://dx.doi.org/10.1016/j.bpj.2012.08.025
http://dx.doi.org/10.1016/j.bpj.2012.08.025


FIGURE 1 (A) Schematic of the experimental setup. Magnet pairs are

positioned such that their same poles face each other with a gap of

1 mm, which enables imaging during magnetic force application. The

imaging plane is the bottom of the microwell, where the superparamagnetic

particles settle and apCAM homophilic interactions take place. (B) Sche-

matic of apCAM homophilic interaction between particle and microwell

surfaces. The extracellular portion of apCAM consists of two fibronectin

type III domains and five Ig-like domains. (C) Simulation of the lifetime

of a single-molecule bond for various hypothetical bond types based on

Bell’s model (24). Variation in the kinetic and mechanical strengths results

in different force–bond lifetime curves for a single-molecule bond in-

volving two types of interactions.
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flow (20). This mechanical coupling has an intermittent,
stochastic character (21) and is regulated by Src family tyro-
sine kinase activity (22). Although the role of apCAM in
growth cone mechanotransduction is well established, the
binding properties of apCAM interactions have not been
characterized.

The kinetic and energetic properties of protein-protein
interactions can be analyzed through the application of an
external force. The energy landscape of a chemical reaction
may contain one or more sharp activation barriers that
need to be overcome for the reaction to occur. External
force application increases the unbinding rate by skewing
this energy landscape (23–25). According to Bell’s model,
the off-rate of a single, specific intermolecular interaction
depends on the externally applied constant force, F:

koff ¼ koff;0 exp

�
F

f

�
(1)

where koff,0 is the dissociation rate of the interaction in the
absence of an external force, and f is the scaling force char-
acteristic of that interaction (24). This model implies that
weak, noncovalent bonds have a limited lifetime and will
break under any level of force if they are pulled on for a suffi-
cient time period. An extension of this model has been
proposed (26) for multiple parallel bonds of the same
type, where the off-rate also depends on the number of
bonds, n:

koff ¼ koff;0

 Xn
i¼ 1

�
exp

ð � F=ði , f ÞÞ
i

�!�1

(2)

Although the dynamic strength of a bond seems to be
greatly affected by the rate rather than the magnitude of
the applied force, the force acting on an individual cell adhe-
sion bond may build up as slowly as 1 pN/s and can break at
a few piconewtons (27). This calls for force-clamp experi-
ments in which Bell’s model can be explicitly applied to
determine the mechanical parameters of inter- and intramo-
lecular bonds.

The magnetic-tweezers technique is based on the nonin-
vasive manipulation of magnetic particles via an externally
imposed magnetic field gradient. In the simplest case, parti-
cles can be pulled away from the imaging plane on an in-
verted microscope toward a permanent magnet assembly
(Fig. 1 A). The fraction of particles remaining on the surface
can be traced over time and provides a measure of the
average lifetime of the bond holding the particle on the sub-
strate (28). The application of external force on a single-
molecule bond is demonstrated in Fig. 1 C, where increasing
external force decreases bond lifetime according to Eq. 1. A
single-molecule bond involving two types of interactions
can lead to a spectrum of bond lifetime responses, depend-
ing on the relative kinetic and mechanical strengths of the
bond types present. This is particularly important in the
case of IgCAMs, where the multimodular domain structure
may be providing these molecules with the mechanical
and subsequently functional flexibility that is required for
their role in cellular mechanotransduction. Several lines of
evidence suggest that homophilic NCAM adhesion is indeed
mediated by multiple types of bonds (29–33), although the
relative roles of individual Ig domain interactions have
been a matter of debate (29,34,35). Characterization of the
kinetic and mechanical properties of apCAM interactions
therefore provides further insight into IgCAM-mediated
cell adhesion mechanisms.

Although NCAM interactions have been characterized
extensively with the use of biochemical (29), structural
(34), and biophysical methods (32,35), no such information
is available for apCAM, which has structural and functional
similarities to NCAM. In this work, we used magnetic twee-
zers to measure the lifetime of homophilic apCAM bonds by
Biophysical Journal 103(6) 1120–1129
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applying constant, physiologically relevant forces to the
complete extracellular region of apCAM (Fig. 1 B). Mathe-
matical modeling revealed that distinct bonds with similar
mechanical kinetic properties mediate the homophilic
apCAM interaction. Themagnetic-tweezers technique offers
relative ease in conducting and interpreting measurements,
and thus enables rapid and potentially parallel screening of
multiple molecular interactions.
MATERIALS AND METHODS

Magnetic-tweezers system and force calibration

Superparamagnetic microspheres (Ø ¼ 1.25 mm; coefficient of variation

(CV) % 12%) were synthesized using an emulsion-based self-assembly

technique that produces microparticles composed of uniform Fe3O4 nano-

spheres 90% by weight (36). The magnetic field was imposed by two pairs

of NdFeB magnets (12.7�12.7�6.35 mm per pair) with their same poles

facing each other over a 1 mm air gap (28). An aluminum magnet holder

attached to a micromanipulator (Eppendorf, Hamburg, Germany) posi-

tioned the magnets over the imaging field of an inverted microscope (Zeiss,

Hertfordshire, UK) at desired distances from the particles. A 20 ml particle

suspension, containing 55,000 particles, was added to a polystyrene micro-

well (Nunc, Rochester, NY) and covered with a glass coverslip (Menzel,

Braunschweig, Germany). Particles were imaged with phase contrast using

a 40� objective. A schematic of the setup is shown in Fig. 1 A. Particle

magnetic properties were measured on a superconducting quantum inter-

ference, device-based, magnetic properties measurement system (MPSP-

SQUID; Quantum Design, San Diego, CA), in which Dynal MyOne beads

(Invitrogen, Carlsbad, CA) were used as reference. The force acting on a

magnetic particle was calculated from the drag velocity in a viscous fluid

(see Supporting Material for details).
Conjugation chemistry

Self-assembling monolayers of polyethylene glycol (PEG) were used to

minimize nonspecific adhesion between magnetic particles and the micro-

wells, which can be on the order of nanonewtons (38). A mixture of me-

thoxy- and amine-terminating PEGs were used to control the apCAM

density on both surfaces. The ratio of amine-terminating PEG to total

PEG was chosen to be 0%, 5%, or 20%. Particles were coated with polye-

thyleneimine (PEI; molecular mass (MM) ¼ 1.3 kDa; Sigma, St. Louis,

MO) via EDC/NHS (Pierce Biotechnology, Rockford, IL) chemistry. Poly-

styrene microwell surfaces were oxidized with trifluoroacetic acid (Sigma)

before functionalization with PEI. Surfaces were then incubated with

a defined mixture of methoxy-PEG-NHS (mPEG, MM ¼ 2 kDa; Rapp Pol-

ymere, Tübingen, Germany) and BOC-protected amine-PEG-NHS (NH-

PEG, MM ¼ 3 kDa; Rapp) in high-salt carbonate buffer (0.6M K2SO4;

pH ¼ 8.2) at 50�C. Any residual free amine groups were capped by cova-

lently linking them with b-mercaptoethanol (Sigma) after PEG incubation.

Recombinant His6-tagged apCAM containing the extracellular portion

was expressed by baculovirus-infected Sf9 cells and purified using

nickel-nitrilotriacetic acid (Ni-NTA) agarose as previously described (39)

(see Supporting Material for details). Two different methods were em-

ployed to conjugate apCAM protein to the protected amine groups on

PEG-coated surfaces. In the so-called oriented method, amine groups

on surfaces were first converted to carboxyl groups using methyl N-succi-

nimidyl adipate (Pierce) and functionalized with Na,Na-Bis(carboxy-

methyl)-L-lysine hydrate (NTA; Sigma). NTA-coated surfaces were then

reacted with apCAM (5 mg/ml in phosphate-buffered saline (PBS) contain-

ing 200 mM Ni2þ) overnight at 4�C. In the so-called nonoriented conjuga-

tion, primary amines of apCAM were converted to protected sulfhydryl

groups using N-succinimidyl-S-acetylthioacetate (Pierce) at a molecular
Biophysical Journal 103(6) 1120–1129
ratio of 1:4. Amine groups on surfaces were modified with sulfosuccini-

midyl-4-(N-maleimidomethyl)cyclohexane-1-carboxylate (Pierce) and re-

acted with deprotected sulfhydryl groups on apCAM overnight at 4�C in

PBS. The density of apCAM on PEG monolayers was measured via color-

imetry (see Supporting Material for details).
Binding and forced unbinding assays

We conducted binding and unbinding assays by periodically imaging

the microwell surface after introducing particles before and during

magnetic force application. We quantified particle binding by analyzing

the particle movement on microwell surfaces. Particles that were not bound

to the surface exhibited a two-dimensional Brownian motion. We automat-

ically extracted the particle trajectories using the tracking algorithm of

AxioVision software (Zeiss). Particles were allowed to settle for 3 or

6 min on microwells before the magnetic force was applied. The time

required to bring the magnet assembly over the microwell was %0.5 s.

Particles were imaged at a high frame rate (4 fps) during the initial 30 s

and a low frame rate (0.5 fps) during the following 240 s. The fraction of

remaining particles was calculated by dividing the number of particles re-

maining on the surface to the number of bound particles before force

application, as determined by their movement over the last 10–15 s of the

settlement period.
Mathematical modeling and simulations

We developed a series of mathematical models to evaluate the data in a theo-

retical framework. The models consist of a series of equations that describe

the association and dissociation kinetics of the bonds formed between

particle and microwell surfaces. Individual Ig domain interactions within

a single apCAM bond (Fig. 1 B) are modeled as point contacts that with-

stand the external force in a parallel fashion. These interactions fail one

after another based on their koff values and the external force is redistributed

to the remaining ones. The particle leaves the surface when the last interac-

tion fails. The models assume that 1), multiple bonds form in parallel (26);

2), the external force is equally distributed among the Ig domains involved;

3), bond formation occurs in a single step to form all Ig domain interactions

simultaneously; and 4), no bond reformation occurs during external force

application. Two conceptual models developed for the NCAM–NCAM

interaction, model R and model L, are represented. Model R is based on

the protein aggregation study by Ranheim et al. (29) and assumes engage-

ment of all five Ig domains. Model L is based on force and molecular

distance measurements obtained by the Leckband group (32,33,35) and

enables two types of bonds, one involving five Ig domains (identical to

model R) and the other involving only two Ig domains. Additional models

were developed to include distinct states within Ig domain interactions that

are modeled in series (Fig. S1). Binding and forced unbinding phases were

simulated in tandem, and model parameters that produced the best fit to the

experimental data were determined using an optimization scheme based on

the random-walk method (40). The models, simulations, and curve-fitting

algorithm are described in detail in the Supporting Material.
RESULTS

Characterization of magnetic particles and
apCAM model surfaces

Our magnetic particles exhibit almost three times higher
magnetic susceptibility than commercially available parti-
cles (Fig. S2 A). The force acting on a superparamagnetic
microsphere is shown as a function of distance from the
magnet assembly (Fig. S2 B). The magnetic force, but not
the drag force, has a CV of 40% because it is proportional
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to the volume of the particle. We estimated the apCAM
coverage using a horseradish peroxidase (HRP)-based
colorimetric assay, where the IgG density measured for
the 0% apCAM constitutes the baseline. Fig. 2 A shows
that apCAM surface density depends on both the conjuga-
tion chemistry and the fraction of NH-PEG employed.
Estimating a PEG layer thickness of 5 nm (41) and an
apCAM-apCAM doublet length of 31 nm (32), the contact
area between a microsphere and a flat surface is calcu-
lated to be 0.127 mm2. This corresponds to 4.1 5 1.0 and
12.5 5 4.1 oriented apCAM molecules (baseline density
subtracted) per contact area for 5% and 20% NH-PEG
ratios, respectively.
Oriented apCAM exhibits low nonspecific
adhesion

We conjugated apCAM to the PEG layer using two different
chemistries. Oriented conjugation incorporates the His6-tag
at the C-terminus of the protein, whereas nonoriented conju-
FIGURE 2 (A) apCAM surface density as a function of the PEG compo-

sition and conjugation chemistry employed. apCAM was detected by an

HRP-based colorimetric assay using 4E8 antibody. Oriented conjugation

was achieved via the His6-tag located at the C-terminus of the protein. Non-

oriented conjugation was achieved via primary amines. (B) Specificity of

the particle-pulling experiment. Less than 12.5% of particles formed

nonspecific adhesions, as determined by the fraction of bound particles at

5 s during 6.5 pN constant-force pulling.
gation utilizes free amines on the protein. To determine the
effect of molecular orientation on the apCAM bond, we con-
ducted forced unbinding experiments varying the NH-PEG/
mPEG ratio on either surface. Nonoriented apCAM ex-
hibited a stronger interaction than oriented apCAM at the
20% NH-PEG ratio (Fig. S3). Of interest, nonoriented
apCAM had much higher nonspecific adhesion compared
with oriented apCAM in experiments in which only one
surface had NH-PEG. We determined the level of nonspe-
cific interactions for the oriented apCAM by examining
the unbinding events under a higher force (Fig. 2 B). The
level of nonspecific interaction in this model system was
determined as <12.5% of particles remaining on the surface
when 6.5 pN constant force was applied for 5 s. In summary,
these pulling experiments demonstrate that apCAM indeed
undergoes homophilic binding.
Bond formation is a function of time and apCAM
coverage

Bond formation was determined by observing the restricted
planar movement of the particles on microwell surfaces.
Data are expressed as the root mean-square displacement
(RMSD) divided by the time period between two consecutive
images (DT). Particle RMDS/DT histograms (Fig. 3 A) sug-
gested that a threshold of 0.75 mm/s can discriminate bound
particles from unbound particles that are exhibiting planar
Brownian motion. The fraction of bound particles increased
over time for all apCAM surface densities, indicating the
formation of initial contacts between apCAM molecules on
opposite surfaces (Fig. 3, inset). The diffusion coefficient
of the bound particles (averaged over 15 s) also decreased
with settling time, suggesting a strengthening in the interac-
tion between apCAM-conjugated surfaces (Fig. 3 B).
Bond lifetime decreases with increasing external
force

Forced unbinding experiments were conducted using PEG-
coated, apCAM-conjugated particle and microwell surfaces
at low (8.1 mg/m2) and high (17.8 mg/m2) apCAM densities.
Particles were allowed to settle on microwells for 3 or 6 min
before force application. Microwell surfaces were moni-
tored during constant vertical forces of 0.5, 3.3, or 6.5 pN.
External force application decreased bond lifetime as a func-
tion of force and apCAM surface density. A small increase
in applied force from 0.5 pN to 3.3 pN significantly acceler-
ated unbinding for surfaces with low apCAM density,
whereas the same increase only slightly accelerated the un-
binding for surfaces with higher apCAM density (Fig. 4).
When lifetime curves of bonds subjected to the same
external force are compared, experiments conducted with
different apCAM surface densities can be distinguished
(Fig. S4). Increasing the settlement period from 3 min to
6 min drastically increased the bond lifetime for 3.3 pN
Biophysical Journal 103(6) 1120–1129



FIGURE 4 Effect of force on bond lifetime at constant apCAM surface

density. (A) At low densities, a modest increase in force is sufficient to

change the bond lifetime drastically. (B) At higher densities, higher forces

are required to affect the bond lifetime. Bars represent mean 5 SE; N ¼ 3

independent experiments for each condition with ~50 particles each.

FIGURE 3 (A) Particle velocity histogram (N ¼ 393 particles) showing

the coexistence of bound particles and particles undergoing two-dimen-

sional Brownian movement after 2 min on the microwell surface for

different apCAM densities. Inset: The fraction of unbound particles

depends on the apCAM surface density and binding time (min/s). (B)

Change in the diffusion coefficient of bound particles over time (min/s)

as a function of apCAM surface density. Bars represent mean 5 SE;

N ¼ 564 particles. N/S: not significant, single-factor analysis of variance

(p > 0.6); * p < 0.001; ** p < 0.0001.
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pulling at low apCAM densities (Fig. 5). Particles that were
allowed to settle for 6 min and pulled with 6.5 pN had higher
bond lifetimes than those that were allowed to settle for
3 min and pulled with 3.3 pN. The force–bond lifetime
results are in agreement with the binding results for long-
settlement-period experiments. Cumulatively, these results
suggest that the forced unbinding of apCAM bonds depends
on the duration of bond formation and the availability of
apCAM on either surface.
Mathematical modeling predicts two types of
bonds

Mathematical models based on biophysical concepts devel-
oped for the NCAM-NCAM bond (29,32,35,42) were
created and tested for the current experimental results (see
Supporting Material). For each model, proposed interdo-
main interactions (Fig. S1) were characterized by fitting
experimental force-bond lifetime curves (curves in Figs. 4
and 5) with kon (on-rate), koff,0, f, and n (number of bonds)
parameters. The quality of the fit is expressed in total error
Biophysical Journal 103(6) 1120–1129
E, calculated by summing the RMSDs for each bond
lifetime curve and the square of the difference between
observed and calculated bound fractions before external
force application (Fig. 6 A). The minimum adjusted coeffi-
cient of determination (R2

adj), corresponding to the worst fit,
is also shown for each model (see Supporting Material for
definition; Fig. 6 A). Model L, which predicts two types of
bonds (Ig1-5 and Igab; Fig. 6 B), provides the best fit. Model
parameters and calculated force-bond lifetime curves for
high apCAM surface density are shown in Fig. 6, C and
D, respectively (see Fig. S5 for low apCAM density curves).
Sensitivity analyses (Fig. S6) and calculated confidence
intervals suggest that the scaling forces of Ig24 and Ig33
cannot be determined accurately. This is because the
model predicts that the Ig15 interaction will have high
affinity and force sensitivity, and therefore will mask the
other two Ig domain interactions. To compare the model
results directly with literature values, we calculated the
effective bond parameters for Ig1-5 bond (see Supporting
Material for details) and converted the scaling forces to
the distance to the thermodynamic transition barrier x* ¼
kBT/f (43). Because the domain interactions are modeled



FIGURE 6 Results of the curve-fitting algorithm. (A) Comparison of

total error E (bars) and the minimum of the adjusted coefficient of determi-

nation (R2
adj; dots), indicating the worst fit of the seven curves for all bond

models. R2
adj for model R is negative and therefore is not shown. (B) Sche-

matic of model L, which provided the best fit. (C) Optimal parameters for

model L. Lower and upper bounds of the 95% confidence interval are given

FIGURE 5 Effect of binding period on bond lifetime. The bond lifetime

at 3.3 pN pulling increases drastically when the binding time is increased

from 3 min to 6 min. When the pulling force is increased to 6.5 pN for

this long binding time, a modest decrease in the bond lifetime is observed.

Bars represent mean5 SE; N¼ 3 independent experiments for each condi-

tion with ~50 particles each.

Force-Lifetime Behavior of apCAM Bonds 1125
with first-order kinetics, the kon values are independent of
concentration. To express the bond kinetics in terms of
dissociation constants (kD), koff/kon ratios were multiplied
with the apparent concentration of apCAM in the contact
zone. The kD values for bonds involving all five or only
two Ig domains were determined to be 0.17 and 0.24 mM,
respectively. In summary, our modeling results suggest
that the homophilic apCAM interaction is mediated by at
least two different types of bonds that have similar sensitiv-
ities against external force.
in subscript before and after the value, respectively. Calculated values are

italicized. Effective koff and f values for Ig1-5 were determined based on

model results for individual Ig domain values. Values in parentheses refer

to high apCAM surface density. Note that the model is not sensitive to

changes in f values for Ig24 and Ig33 bonds. (D) Force–bond lifetime curves

for high apCAM surface density data calculated by simulating model L with

the parameter set given in C. Triangles, circles, and squares represent the

experimental data obtained for 0.5, 3.3, and 6.5 pN, respectively. Contin-

uous lines represent model results for 0.5 (dark gray; blue in online version;

R2 ¼ 0.95), 3.3 (black; R2 ¼ 0.64), and 6.5 pN (light gray; red in online

version; R2 ¼ 0.94) external force. Broken lines represent model results

for 0.3, 0.7, 2.0, 4.6, 4.9, and 9.1 pN external force, corresponding

to 540% variation in the applied force.
DISCUSSION

In this study we applied physiologically relevant constant
forces, as exerted by filopodia in growing neurons (44), to
apCAM bonds to characterize their kinetic and mechanical
properties. Our results show that apCAM undergoes homo-
philic interactions as predicted based on its vertebrate
homolog, NCAM. These findings are consistent with our
recent apCAM force spectroscopy data acquired by atomic
force microscopy (AFM) (45). External force application
decreased the average bond lifetime as predicted by theory
(24,25,27,46). Obtained force-bond lifetime curves were fit
to a number of theoretical bond models, and the dissociation
rate (koff) and characteristic scaling force (f) of each hypo-
thetical Ig domain interaction were determined. Curve-
fitting results suggest a bond model with two types of bonds.

The free-energy minima of a biochemical reaction de-
scribe various stable states to be reached and energy barriers
to be overcome. External mechanical force may affect the
energy landscape and thereby change the reaction pathway
(see Bustamante et al. (23) for a review). In the case of
macromolecular bonds, tilting of the energy landscape
may cause an inner activation barrier to emerge as the high-
est-energy threshold and to dominate the reaction kinetics
(46). Because single attachments between two macromole-
cules often contain multiple interactions, they behave as
multiple distinct bonds when subjected to an external force
(46). Despite the wide range of bond lifetime curves (Fig. 1
C) they exhibit, simplistic single-bond models involving
two types of interactions cannot explain the observed
apCAM bond behavior. Therefore, we conducted mathemat-
ical modeling to explore and compare various conceptual
models based on ideas developed for the homolog NCAM.
The best fit was provided by model L, which predicts two
alternative bond types with similar mechanical properties
Biophysical Journal 103(6) 1120–1129
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but different affinities—one involving all five Ig domains
in an antiparallel configuration (called Ig1-5), and one
involving only two Ig domains. We call the latter bond
Igab because our model cannot distinguish between Ig12,
Ig23, etc. interactions. It is remarkable that our curve-fitting
algorithm favored a bond model with a relatively low
number of free parameters.

The relative roles of individual Ig domains in homophilic
NCAM adhesion have been a matter of debate because
results obtained by different experimental methods led to
contradictory bond models. Binding affinity studies using
purified recombinant Ig domains suggested an antiparallel
organization in which all Ig domains are involved in binding
and the Ig33 interaction is the strongest of all (29). However,
NMR spectroscopy studies identified binding sites for
the Ig12 interaction (30,31), leading to an alternative model
in which an antiparallel Ig12 interaction dominates the
NCAM-NCAM adhesion. More recently, based on crystal-
lography and neurite outgrowth assays, a third model was
proposed in which Ig12 cis interactions mediate dimerization
of NCAM on each surface, and Ig13 or Ig23 trans interac-
tions mediate the binding of NCAM dimers located on
opposite surfaces (34). Force and distance measurements
on full-length NCAM ectodomains and domain deletion
mutants demonstrated the existence of two distinct interac-
tions, namely, Ig12 and Ig33, but not Ig13 or Ig23 (32), thereby
rejecting the third model. AFM single-molecule pulling
experiments supported a model in which two mechanically
distinct interactions form the NCAM-NCAM bond (33,35)
and Ig33 and Ig12 correspond to the stronger and weaker
NCAM bonds, respectively (35). In summary, our results
contribute to the notion that IgCAMs share similar binding
mechanisms, such as the involvement of multiple types of
Ig domain interactions. Although it stems from models
developed for NCAM (29,35), our bond model requires
differences in both the chemical and mechanical strengths
of the individual Ig domain interactions within the Ig1-5
complex.

The majority of studies that have investigated the rela-
tionship between force and adhesion bond dynamics used
AFM. This technique generates a high number of force-
distance curves that are compiled into rupture force
histograms, which in turn are used to determine bond char-
acteristics. AFM allows for control of the force rate (typi-
cally hundreds to thousands of piconewtons per second)
but compromises force resolution. In this study we used a
magnetic-tweezers model that enables <0.1 pN resolution
and operates in the 0–10 pN range. High force rates are
not uncommon in cellular adhesion, such as in the adhesion
of immune cells to the vasculature (43); however, low rates
(1–10 pN/s) are also observed in adhesion-related cellular
events, such as force-induced initiation of neurites (47) or
exertion of force by filopodia during axon outgrowth (44).
Cell adhesion is a highly dynamic process that requires
IgCAM bonds to operate in different force and force rate
Biophysical Journal 103(6) 1120–1129
regimes. In this regard, static force-clamp measurements
are complementary to dynamic AFM measurements. The
empirical data generated by force-clamp experiments can
be directly subjected to Bell’s model, and bond properties
can be estimated without exhaustive modeling as in the
case of AFM (33).

Our experimental results suggest that the apCAM surface
density and binding period affect the binding and forced
unbinding kinetics. Accordingly, the model predicts an
increase in the number of bonds forming between adjacent
surfaces when the binding period or the apCAM density is
increased. The model also predicts an increase in the frac-
tion of particles bound via Ig1-5 from 47% to 62% with
increasing apCAM density. This suggests that the lack of
availability of apCAM on surfaces may limit the engage-
ment of the full-length ectodomain and favor the formation
of Igab interactions. One should note that kon represents the
binding rate of a diffusing microparticle on a flat surface,
rather than the actual on-rate of the molecular interaction
that takes place. By calculating an apparent density of ap-
CAM in the contact zone, we estimate the kon values to be
2.6�105 and 2.2�106 M�1s�1 for the two apCAM densities
that were used in this study. Using these measured kon and
koff values for apCAM, we determined the kD values for
the two bond types to be 0.17 and 0.24 mM, which are
weaker than NCAM-NCAM (25 nM (32)) and V-CAM-in-
tegrin (11 nM (48)) bonds, but stronger than homophilic
VE-cadherin (1 mM–10 mM (49)) and NCAM Ig12 (55
mM (50)) bonds. Effective x* values for both bond types
were calculated as 2.2 nm, which are significantly higher
than the reported values for other homophilic CAM
bonds (N-cadherin: 0.77 nm (51); VE-cadherin: 0.59 nm
(52) or 0.42 nm (49); ALCAM: 0.38 nm (53); NCAM:
0.32 nm and 0.17 nm (35); and E-cadherin: 0.32 nm and
0.1 nm (51)).

We recently characterized the apCAM-apCAM interac-
tion using AFM in our laboratory (45). The AFM study
also detected strong and weak homophilic apCAM bonds
with kon ~2�104 M�1s�1, x* ¼ 0.46 5 0.88 and 0.1 5
0.06 nm, respectively, and koff ¼ 0.05 5 0.88 and 0.72 5
1 s�1, respectively. A comparison of the results obtained
from the two techniques needs to be considered in the light
of several experimental details. First, the Bell-Evans model
was used to analyze the kinetics of the homophilic apCAM
interactions for the AFM measurements, which meant that
the apparent increase in adhesion force was determined as
a function of increasing rate of applied force. The applica-
tion of the Bell-Evans model clearly introduced a high level
of uncertainty to the measurement of koff, and the error was
so high for the strong bond that the koff value was considered
to be unreliable. There was also a high level of uncertainty
in the value of kon due to the uncertainty in the calculation of
the effective concentration of apCAM on the tip of the AFM
probe. Second, apCAM had to be covalently immobilized in
the AFM study because it was found that the His6-NTA
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bond failed after several hundred single force measure-
ments. The magnetic-tweezers technique uses a large
number of probes to measure single rupture events; there-
fore, His6-NTA chemistry could be used to conjugate the ap-
CAM molecules for these measurements. We speculate that
the random orientation of apCAM molecules resulting from
the covalent chemistry may reduce the apparent force sensi-
tivity, which would explain the lower scaling forces ob-
served in the magnetic-tweezers measurements. However,
the magnetic-tweezers unbinding reaction also took place
over a much longer time period, and thus the low scaling
forces could be indicative of a different free-energy reaction
landscape (54). From a biological point of view, high
affinity and high sensitivity may be desirable for apCAMs,
which are primarily used for neuronal synapse formation
and maturation. Such bonds would facilitate long-term
connections but permit the bond to break under low retrac-
tion forces once the synapse is no longer needed.

In an attempt to explore the interaction between apCAM-
conjugated microspheres andAplysia bag cell neuron growth
cones, we added particles to cultured neurons (not shown).
Microspheres that fell onto the peripheral zone of the growth
cone rapidly moved to the transition zone through actin flow
coupling and remained attached to the cell surfacewhen sub-
jected to 10 pN vertical force for>5min. Consistent with the
holographic optical tweezers results (21) and apCAM beads
physically restrainedwith amicropipette (20), these observa-
tions indicate a strong coupling between the membrane
apCAM and the underlying actin cytoskeleton. This suggests
that, as opposed to a rigid, flat surface with a monolayer of
PEG, the plasma membrane is able to deform to engulf
microparticles. This allows numerous apCAM bonds to
form due to increased contact area. The formation and
breakage of apCAM bonds on live neurons are beyond the
scope of this work; however, these observations indicate
that cell-based force-clamp experiments require experi-
mental setups that can deliver forces on the order of 100 pNs.

This study confirms the homophilic binding properties of
apCAM and demonstrates that magnetic tweezers are suit-
able for characterizing relatively weak molecular interac-
tions between IgCAM molecules subjected to constant
forces. Regardless of the experimental method employed,
single-molecule force clamps are powerful tools for mea-
suring bond kinetics (55). Recent advances in magnetic
(56) and optical (57) sensing modalities, as well as novel
microfabrication techniques (58), are paving the way for
massively parallel, multiplexed magnetic-tweezers experi-
ments. These systems will not only facilitate biophysical
characterization of molecular interactions but also enable
high-content screening for medical applications.
CONCLUSIONS

To our knowledge, this study represents the first application
of piconewton-level constant forces via magnetic tweezers
on IgCAM bonds. We have shown that apCAM undergoes
homophilic binding involving relatively low adhesion
forces. An analysis of the force-bond lifetime relation sug-
gests that Ig domain interactions within the apCAM bond
complex have affinity constants and characteristic scaling
forces in the range of values that have been reported for
other CAM bonds and obtained by other methods. Mathe-
matical modeling suggests that only those bond models
that incorporate multiple bond types can fit the forced
unbinding curves. This level of complexity may be benefi-
cial for CAMs that are to operate in different force and force
rate regimes.
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